手机APP下载

您现在的位置: 首页 > 英语听力 > 英语视频听力 > 探索物理小奥秘 > 正文

第167期:我们如何知道黑洞的存在

来源:可可英语 编辑:Kelly   可可英语APP下载 |  可可官方微信:ikekenet

If you’ve heard only one thing about black holes, it’s probably that, once inside a black hole’s event horizon, nothing, not even light, can escape.

如果你只听说过一件关于黑洞的事情,那很可能是,一旦进入黑洞的视界,任何东西,即使是光,都无法逃脱。

At which point it’s natural to wonder, if nothing can escape a black hole, how could we ever observe them?

在这一点上,人们很自然地会想,如果没有什么东西能逃出黑洞,我们怎么能观察到它们呢?

How do we even know they exist?

我们怎么知道他们的存在呢?

Well, only things inside the event horizon are stuck – black holes also gravitationally pull on stuff outside their event horizons, and by looking at that stuff we can get a really good sense that there’s a black hole nearby.

嗯,只有视界内的东西会被卡住--黑洞也会通过引力吸引视界外的物体,通过观察这些物体,我们可以很好地感觉到附近有一个黑洞。

For example, lots and lots of stars orbit in pairs, but we also see stars orbiting things that aren’t normal stars, but instead emit crazy amounts of x-rays

例如,许多恒星成对运行,但我们也看到恒星围绕着不是普通恒星的物体运行,而是释放出数量惊人的X射线

– and x-rays in space often come from dust and gas that gets superheated while spiraling into a very dense, very heavy object.

-太空中的X射线通常来自尘埃和气体,它们在螺旋状旋转成一个非常密集、非常重的物体时会过热。

Anyway, by figuring out the mass and orbital characteristics of the stars whose partners emit x-rays, we can determine how heavy the partners are.

无论如何,通过计算出其伴星发出x射线的恒星的质量和轨道特征,我们可以确定伴星的重量。

Some parters are lightweight enough to be neutron stars , but neutron stars can only get so big before they collapse in on themselves

有些部分很轻,足以成为中子星,但中子星只有在自身坍塌之前才能变得如此大

– theoretical calculations put their upper size limit at around 2-3 times the mass of the sun, and the biggest ones we’ve observed all fall inside that limit .

-理论计算表明,它们的大小上限约为太阳质量的2-3倍,我们观察到的最大的中子星都在这个范围内。

And yet, there are plenty of stars whose orbits clearly show that their x-ray-emitting partners are 5-10 times the mass of the sun, and we simply don’t know anything else these could be other than black holes.

然而,有许多恒星的轨道清楚地显示,它们的x射线发射伙伴的质量是太阳的5-10倍,而我们根本不知道这些恒星可能是黑洞以外的其他任何东西。

Sometimes you don’t even need an orbiting star at all, and just the x-rays and radio waves from the hot infalling material can be used to determine the mass of a solitary non-star object.

有时你甚至根本不需要一颗绕轨道运行的恒星,只需要来自热物质的x射线和无线电波就可以确定一个孤立的非恒星物体的质量。

In some cases they turn out to be neutron stars, but in others they turn out to be way too heavy, and can only be black holes.

在某些情况下,它们被证明是中子星,但在另一些情况下,它们被证明是太重了,只能是黑洞。

There are also objects at the centers of lots of galaxies (including our own), that emit lots of x-rays, radio waves and infrared radiation,

在许多星系(包括我们自己的星系)的中心也有物体,它们发出大量的x射线、无线电波和红外线辐射,

but not much visible light, and we know these objects are stupendously heavy because of the way that nearby stars and hot glowing dust orbit them.

但可见光不多,我们知道这些物体非常重,因为附近的恒星和炽热的发光尘埃围绕着它们旋转。

These orbits tell us the objects are both so heavy and so small they can’t possibly be a star or cluster of stars or distributed clumps of other invisible matter;

这些轨道告诉我们,这些物体既很重,又很小,它们不可能是一颗恒星或星团,也不可能是分布着的其他不可见物质;

the only thing they could be is supermassive black holes.

它们唯一的可能是超大质量的黑洞。

For example, in the middle of the Milky Way there’s an x-ray, radio wave and infrared-emitting object called “Sagittarius A*” with nearby stars orbiting it in such such small, fast orbits that we know it weighs 4 million times as much as the sun!

例如,在银河系中间有一个叫做“人马座A*”的X射线、无线电波和红外线发射天体,附近的恒星围绕着它运行,轨道如此之小,如此之快,以至于我们知道它的重量是太阳的400万倍!

And finally, we’ve also directly observed, on multiple occasions, gravitational waves that were emitted from the inspiralling collisions of two very heavy dense objects.

最后,我们还在多个场合直接观测到了引力波,这些引力波是从两个非常重的致密物体的激励性碰撞中发出的。

Some of those waves have the signature of a collision between objects lightweight enough to be neutron stars.

其中一些波具有轻到足以成为中子星的物体之间碰撞的特征。

But other waves could only have come from collisions between objects far too heavy to be anything but pairs of black holes merging to become single, bigger, black holes.

但是,其他的波只能来自于物体之间的碰撞,这些物体太重了,除了成对的黑洞合并成为单一的、更大的黑洞之外,不可能是任何东西。

And in these cases, the details of the wave signatures looked exactly like what theoretical black hole collision calculations predict.

在这些情况下,波特征的细节看起来与理论黑洞碰撞计算预测的完全一样。

So, in many different places throughout the universe, we’ve detected very dense high-mass objects by their gravity

因此,在宇宙中许多不同的地方,我们已经通过它们的引力探测到了密度非常高的高质量物体

– either indirectly via their affect on nearby bright stuff like stars or accretion disks of gas and dust, or directly via their gravitational waves.

--要么是通过它们对附近明亮物质(如恒星或气体和尘埃的吸积盘)的影响间接探测到的,要么是直接通过它们的引力波探测到的。

Many of these dense high-mass things are too dark to be regular stars, too compact AND too dark to be clusters of stars, and too heavy to be neutron stars.

很多这样的高密度大质量物体太暗,不可能是普通的恒星,太密太暗,不可能是星团,也不可能是中子星。

They exist, they behave pretty much exactly the way physics predicts black holes would act, and there’s literally nothing else they could be.

它们的存在,它们的行为与物理学预测的黑洞的行为几乎完全一致,而且它们几乎不可能是其他任何东西。

To quote an astronomer: we have “strong confidence that black holes, or at least objects that have many of the features of black holes, exist” ?

引用一位天文学家的话说:我们“非常确信黑洞,或者至少是具有黑洞许多特征的物体是存在的”?

In other words, if it looks like a black hole and acts like a black hole… we call it a black hole.

换句话说,如果它看起来像黑洞,行为也像黑洞,我们就叫它黑洞。

Thanks to NASA's James Webb Space Telescope Project at the Space Telescope Science Institute for supporting this video.

感谢NASA在太空望远镜科学研究所的詹姆斯·韦伯太空望远镜项目支持这段视频。

The James Webb Space Telescope will be able to observe the most distant emissions from some of the earliest supermassive black holes in primordial galaxies and hopefully help us understand how black holes drive galaxy evolution and development.

詹姆斯·韦伯太空望远镜将能够观测到原始星系中一些最早的超大质量黑洞发出的最遥远的辐射,并有望帮助我们了解黑洞是如何推动星系的进化和发展的。

Webb will also spot black holes via the stars, gas and dust they attract, and help us understand black hole energy dynamics, including the powerful relativistic jets they can produce.

韦伯太空望远镜还将通过黑洞所吸引的恒星、气体和尘埃来发现黑洞,并帮助我们理解黑洞的能量动力学,包括它们可以产生的强大的相对论喷流。

Thanks again to JWST!

再次感谢詹姆斯·韦伯太空望远镜!

重点单词   查看全部解释    
collision [kə'liʒən]

想一想再看

n. 碰撞,冲突

 
produce [prə'dju:s]

想一想再看

n. 产品,农作物
vt. 生产,提出,引起,

联想记忆
gravitational ['grævə'teiʃənəl]

想一想再看

adj. 重力的,引力作用的

联想记忆
universe ['ju:nivə:s]

想一想再看

n. 宇宙,万物,世界

联想记忆
galaxy ['gæləksi]

想一想再看

n. 银河,一群显赫之人

联想记忆
understand [.ʌndə'stænd]

想一想再看

vt. 理解,懂,听说,获悉,将 ... 理解为,认为<

 
radiation [.reidi'eiʃən]

想一想再看

n. 辐射,放射线

 
evolution [.i:və'lu:ʃən]

想一想再看

n. 进化,发展,演变

联想记忆
compact [kəm'pækt]

想一想再看

n. 合约条约,梳妆粉盒
adj. 紧凑的,紧

联想记忆
escape [is'keip]

想一想再看

v. 逃跑,逃脱,避开
n. 逃跑,逃脱,(逃

 

发布评论我来说2句

    最新文章

    可可英语官方微信(微信号:ikekenet)

    每天向大家推送短小精悍的英语学习资料.

    添加方式1.扫描上方可可官方微信二维码。
    添加方式2.搜索微信号ikekenet添加即可。